
Satellite	Images	in	Cloudy	Weather
Project	report
Øget	konkurrencekraft	i	landbruget	gennem	brug	af	kunstig	intelligens	-	AP1B:	Satellitbilleder	også	i
gråvejr
Data	Science,	Digital,	SEGES
December	21,	2018

Summary

The	objective	of	the	project	was	to	generate	biomass	maps	over	danish	fields	from	remote	sensing,	even	in	cloudy	weather.	A	state-of-
art	machine	learning	method,	called	a	conditional	generative	adversarial	network	(cGAN),	is	utilized	to	generate	Sentinel	2	images	only
from	existing	Sentinel	1	data.	Our	results	are	promising	and	shows	that	our	generated	Sentinel	2	images	often	are	as	close	to	the
ground	truth	Sentinel	2	images	as	the	previous	cloud-free	Sentinel	2	images.	However,	our	generator	does	not	capture	all	local	changes
in	biomass	in	the	field,	thus	the	system	is	not	yet	ready	for	production.	Future	work	for	improving	the	generated	images	is	presented
lastly	in	this	notebook.

Table	of	Contents

1.	 Introduction
2.	 Methods

A.	 Data	collection
B.	 Feature	set
C.	 Model
D.	 Performance	evaluation

3.	 Results
A.	 Quantitative	results
B.	 Qualitative	results

4.	 Discussion
A.	 Future	work



Figure	1:	The	hyperspectral	camera	on	the	Sentinel	2	(S2)	satellite
photographs	the	crop. Figure	2:	Clouds	covers	the	crop	and	only	the	Sentinel	1	satellite

can	observe	the	crop.

Introduction
In	2016	it	became	possible	to	analyze	crop	growth	based	on	satellite	images	covering	all	of	Denmark.	The	Sentinel	2	(S2)	satellite
acquires	an	image	in	the	visible	light	spectrum	of	the	entire	country	every	5'th	day,	see	Figure	1.	Such	images	may	be	used	to	compute
the	green	biomass	of	each	field	covering	part	of	Denmark.	The	computed	biomasses	are	displayed	in	the	IT-systems	CropSAT	and
CropManager	which	are	extensively	used	by	farmers	and	agricultural	advisors.	The	only	disadvantage	is	that	Sentinel	2	cannot	acquire
useful	images	over	areas	with	cloudy	weather.	A	consequence	of	this	is	that	only	a	small	percentage	of	the	images	produced	by
Sentinel	2	in	the	spring	of	2017	were	useful	for	computing	biomasses	due	to	bad	and	cloudy	weather.

In	addition	to	the	Sentinel	2	satellite,	we	also	have	access	to	radar	images	from	the	Sentinel	1	(S1)	satellite.	The	quality	of	radar
images	is	independent	of	cloudy	weather,	as	illustrated	by	Figure	2.	The	goal	of	this	project	is	to	use	machine	learning	methods	to
establish	a	mathematical	connection	between	Sentinel	1	and	Sentinel	2	images.	It	is	expected	that	it	is	possible	to	find	such	a
connection	based	on	satellite	images	from	at	least	two	growing	seasons.	When	a	reliable	connection	has	been	found,	the	usefulness	of
CropSAT	and	CropManager	no	longer	depends	on	the	weather	conditions.

Essentially,	this	task	is	an	investigation	of	the	feasibility	of	replacing	the	current	pipeline	(see	in	Figure	3)	for	computing	nitrogen
prescription	maps	with	a	new	proposed	pipeline	(see	below)	based	on	Sentinel	1	imagery.

Figure	3:	Current	and	proposed	pipelines	for	satellite	imaging	processing	in	SEGES.

Methods
In	this	chapter	we	describe	the	data	collection	resulting	in	the	utilized	feature	set.	We	also	describe	the	machine	learning	method	used
for	training	a	model	on	the	feature	set,	and	finally	we	describe	how	we	evaluate	the	performance	of	this	model.



Data	collection
The	collection	of	satellite	images	was	performed	based	on	the	17.385	danish	fields,	shown	in	Figure	4.	The	criteria	for	selecting	these
fields	were	(as	shown	in	./MVP3_all_fields_data_set/SIICW-72_field_polygon_dataset.ipynb):

Each	field	has	the	same	polygon	in	2016,	2017,	and	2018,	thus	the	field	have	not	changed	significantly	with	respect	to	its	areal
or	the	area	it	covers	(see	the	field	polygon	normalization	in	MVP5	of	the	BDICG	project).
The	main	crop	on	each	field	was	either	winter	wheat	or	silage	maize	also	in	2016,	2017,	and	2018.

This	resulted	in	103.982	pairs	of	Sentinel	1	level-1	Ground	Range	Detected	(GRD)
(https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products)	and	Sentinel	2	level-2	A
(https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products)	satellite	images,	as	shown	in	
./MVP3_all_fields_data_set/SIICW-139_field_raster_model.ipynb.	The	average	size	of	the	image	pairs	is	32	pixels	wide	and	37
pixels	high,	where	each	pixel	represents	10x10	meters	of	the	field.	The	largest	field	is	141	pixels	wide	and	183	pixels	high.	Each
Sentinel	1	images	contains	a	channel	for	each	of	the	two	polarisations:	VV	and	VH.	Each	Sentinel	2	image	contains	a	channel	for	each
of	the	12	hyperspectral	bands:	B01,	B02,	B03,	B04,	B05,	B06,	B07,	B08,	B8A,	B09,	B11,	B12,	and	a	channel	for	each	of	the	following
three	vegetation	indices:	Normalized	Difference	Vegetation	Index	(NDVI)	(https://www.indexdatabase.de/db/i-single.php?id=58),
Normalized	Difference	RedEdge	(NDRE)	(https://www.indexdatabase.de/db/i-single.php?id=223),	Modified	Soil	Adjusted	Vegetation
Index	2	(MSAVI2)	(http://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:modified_soil-adjusted_vegetation_index),	we
computed	based	on	the	hyperspectral	bands.

Figure	4:	Location	of	all	17.385	fields	(from	./MVP3_all_fields_data_set/SIICW-139_field_raster_model.ipynb)

Feature	set
The	collected	103.982	pairs	of	Sentinel	1	and	Sentinel	2	satellite	images,	was	split	into	a	train,	a	validation,	and	a	test	dataset,	of	the
sizes:

train:	83.233	image	pairs.
validation:	10.149	image	pairs.
test:	10.600	image	pairs.

This	split	is	performed	such	that	images	of	the	same	field	only	exist	in	one	of	the	datasets,	as	shown	in	
./MVP4_first_pix2pix_model/SIICW-178_dataset_split_and_attributes.ipynb.



Model
As	our	machine	learning	method	for	generating	realistic	Sentinel	2	images	based	on	Sentinel	1	data,	we	use	the	pix2pix	model	first
proposed	in	"Image-to-Image	Translation	with	Conditional	Adversarial	Nets	(https://phillipi.github.io/pix2pix/)"	which	is	a	conditional
generative	adversarial	network	(cGAN).	A	cGAN	consists	of	two	parts:	a	generator	and	a	discriminator,	each	conditioned	on	some	input
data,	i.e.	in	our	case	the	Sentinel	1	data.	The	generator	has	the	task	of	generating	an	image	based	on	an	input	image,	and
discriminator	has	the	task	of	determining	if	a	given	image	is	generated	or	real.	Thereby,	the	generator	can	be	trained	by	using	the
adversarial	loss	determined	by	how	good	the	discriminator	is	to	classify	images	as	generated	or	real.

As	concluded	in	./MVP4_first_pix2pix_model/pix2pix_setup.md	we	chose	to	use	the	PyTorch	implementation	of	pix2pix	found	here
(https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix),	as	it	is	the	more	suitable	implementation	to	our	usage.	However,
modifications	of	loading	our	satellite	image	data	were	needed	before	we	could	perform	our	experiments	on	our	satellite	image	dataset,
see	MVP4_first_pix2pix_model/SIICW-163_execute_S1_S2_training.ipynb	for	implementation	details.

We	have	experimented	with	different	tasks	for	the	network	(i.e.	generate	the	Sentinel	2	image	with	B04,	B05,	and	B08	or	generate	the
Sentinel	2	NDVI	image)	and	different	hyperparameter	settings	(i.e.	L1	regularization	constant	to	100	or	200,	and	either	5	or	6	epochs).
All	experimental	networks	were	trained	with	only	5	to	6	epochs	due	to	the	large	size	of	83.233	training	image	pairs.	Our	best	results	are
based	on	generating	the	Sentinel	2	NDVI	image	using	a	L1	regularization	constant	of	200,	and	the	results	of	this	setting	will	be
presented	in	this	report.

Performance	evaluation
We	evaluate	the	performance	of	our	generator	network	based	on	the	pixel-wise	error-difference	between	the	generated	and	the	real
(i.e.	the	ground	truth)	NDVI	image,	named	"fake_error".	We	also	present	the	pixel-wise	error-difference	between	an	NDVI	image	on	a
previous	and	current	(i.e.	the	ground	truth)	date,	named	"historic_error".	Based	on	each	error-difference,	we	also	report	the	mean-
absolute-error.	The	evaluation	is	based	on	the	10.149	image	pairs	in	the	validation	dataset,	which	results	in	7.008.884	pixel	error
samples.

Results
This	section	presents	the	results,	as	computed	in	the	notebook	./MVP4_first_pix2pix_model/SIICW-
175_final_visual_examples_of_inferred_S2_images_veg_index.ipynb.

Quantitative	results
The	following	two	graphs	based	on	quantitative	data	show	the	pixel-wise	error-difference	(graph	to	the	left	side)	and	the	pixel-wise
mean-absolute-error	(graph	to	the	right	side),	both	containing	the	"fake_error"	as	the	blue	plot,	and	"historic_error"	as	the	read	plot.



In	[17]:

fig,	axes	=	plt.subplots(1,	2,	figsize=(15,	15/(1.62*2)))
sns.distplot(df_error_table['NDVI_historic_error'].dropna(),	ax=axes.flat[0],	axlabel=False,	label='Historisk	S2'
)
sns.distplot(df_error_table['NDVI_fake_error'].dropna(),	ax=axes.flat[0],	axlabel=False,	label='S1-baseret')
#axes.flat[0].set_title('Cellefejl')
axes.flat[0].set_xlabel('NDVI	Cellefejl')
axes.flat[0].legend()
sns.distplot(df_field_mae_error['NDVI_historic_error'].dropna(),	ax=axes.flat[1],	axlabel=False,	label='Historisk
	S2')
sns.distplot(df_field_mae_error['NDVI_fake_error'].dropna(),	ax=axes.flat[1],	axlabel=False,	label='S1-baseret')
#axes.flat[1].set_title('Gennemsnitlig	markfejl')
axes.flat[1].set_xlabel('Gennemsnitlig	absolut	NDVI	markfejl')
axes.flat[1].legend()

for	fig_ext	in	fig_exts:
				fig.savefig('poster/histograms{}'.format(fig_ext))

Since	the	year	2017	had	many	cloudy	days	compared	to	2018,	the	individual	pixel-wise	error-difference	of	the	two	years	is	presented
below.

In	[8]:

#for	index	in	['NDVI',	'NDRE',	'MSAVI2']:
for	index	in	['NDVI']:
				g	=	sns.FacetGrid(df_error_table,	col='year',	col_wrap=2,	margin_titles=True)
				g.map(sns.distplot,	f'{index}_historic_error',	label=f'Historisk	S2')
				g.map(sns.distplot,	f'{index}_fake_error',	label=f'S1-baseret',	color=ggplot_colors[1]).add_legend().set_xlab
els('')
				plt.show()
				print('\n\n\n')

Qualitative	results
The	following	visualisation,	based	on	qualitative	data,	shows	the	given	input	data	to	the	pix2pix	generator.	The	input	data	consist	on
the	Sentinel	1	VV	(seen	on	the	left	side)	and	VH	(seen	on	the	right	side)	polarisations.

/usr/local/continuum/miniconda3/envs/py36_v2/lib/python3.6/site-packages/scipy/stats/stats.py:1713:	
FutureWarning:	Using	a	non-tuple	sequence	for	multidimensional	indexing	is	deprecated;	use	`arr[tupl
e(seq)]`	instead	of	`arr[seq]`.	In	the	future	this	will	be	interpreted	as	an	array	index,	`arr[np.ar
ray(seq)]`,	which	will	result	either	in	an	error	or	a	different	result.
		return	np.add.reduce(sorted[indexer]	*	weights,	axis=axis)	/	sumval



In	[12]:

S1_VV	=	ds.S1_GRD_IW_VV.dropna('time',	how='all').sel(time='2018-05-15').where(ds.field_polygon)
S1_VV	=	xr.where(S1_VV	>	0.1,	0.1,	S1_VV)
S1_VH	=	ds.S1_GRD_IW_VH.dropna('time',	how='all').sel(time='2018-05-15').where(ds.field_polygon)
pol_index	=	pd.Index(['VV',	'VH'],	name='polarization')
S1_pol	=	xr.concat([S1_VV,	S1_VH],	pol_index)
S1_pol.name	=	'IW	GRD'

fg	=	S1_pol.plot(col='polarization',	size=7)
for	ax	in	fg.axes.flat:
				ax.set_axis_off()
				ax.set_title('S1	-	'	+	ax.get_title().split()[-1]	+	'	-	2018-05-15',	fontdict=fontdict)

for	fig_ext	in	fig_exts:
				fg.fig.savefig('poster/S1_polarizations{}'.format(fig_ext))

The	visualisation	below	show	the	comparison	of	a	historical	NDVI	image	(seen	on	the	left	side),	the	ground	truth	NDVI	images	(seen	in
the	center),	and	the	pix2pix	generated	NDVI	image	(seen	on	the	right	side),	which	is	generated	using	the	visualized	input	data	from
above.

In	[18]:

imgs_to_show	=	{
				11390:	'2018-05-15',
				#9096:	'2018-05-15'
}

for	ID_DDS_field,	img_time	in	imgs_to_show.items():
				ds	=	dask.delayed(xr.open_dataset)(DATASET_PATH	/	f'{ID_DDS_field}.nc',
																																			chunks={}).compute()
				visualize_biomass_image_alternatives(
								ds,	img_time,	visualization_path=Path('poster/'),	aspect=1,	size=7,	erosion_radius=5)



Discussion
Our	graphs	of	the	quantitative	error-difference	show	that	our	pix2pix	generator	can	not	generate	NDVI	images	with	as	small	error-
difference	as	all	of	the	historic	NDVI	images.	However,	the	mean-absolute-errors	of	the	generated	NDVI	images	are	more	centered	in
the	graph,	thus	the	error	deviation	between	different	generated	images	is	smaller	than	the	historic	NDVI	images.	We	suspect	this
deviation	of	the	historic	NDVI	images	is	due	to	the	deviation	in	the	time	span	between	the	acquisition	time	of	the	ground	truth	image
and	the	previous	NDVI	image.	This	suspicion	is	also	supported	by	the	tendency	shown	in	the	graphs	of	the	error-difference	per	year.
These	graphs	show	that	our	generated	images	have	on	average	a	smaller	error-difference	than	the	historic	NDVI	image	in	2017	and
thus	is	better	to	use.	We	believe	this	is	because	of	the	many	cloudy	days	in	2017,	which	result	in	a	big	time	span	between	the
acquisition	time	of	cloud-free	Sentinel	2	images.	Thereby,	we	conclude	further	investigation	is	needed	but	we	assume	that	the	error-
difference	shows	that	it	can	be	beneficial	to	use	our	pix2pix	generated	NDVI	images	instead	of	the	previous	NDVI	image,	when	the
acquisition	time	of	the	previous	NDVI	image	is	too	large.

The	qualitative	results	show	that	the	pix2pix	generator	can	not	capture	all	of	the	local	NDVI	variation	in	the	field,	which	clearly	is
captured	in	the	historic	NDVI	image,	here	we	mainly	refer	to	the	spots	of	lower	NDVI	values	found	at	the	same	locations	of	the	field
both	in	the	ground	truth	image	and	historic	NDVI	image.	However,	we	find	it	impressive	that	the	pix2pix	generator	can	capture	some	of
the	NDVI	variation	and	generate	a	NDVI	image	with	NDVI	values	similar	to	the	ground	truth	image,	i.e.	from	0.75	to	0.90	NDVI.	These
positive	results	are	promising	and	present	a	chance	that	further	work	can	improve	the	pix2pix	generator	to	capture	all	of	the	local	NDVI
variation,	thus	making	the	generated	NDVI	a	better	data	foundation	for	predictive	models	than	the	historical	NDVI	image.

Future	work
Future	work	of	this	project	is	as	follows:

Change	the	size	of	the	images	given	to	the	network	from	256x256	pixels	to	128x128	pixels,	to	avoid	excessive	padding	of	null
values	for	most	images.
Download	more	pictures	with	higher	cloud	coverage	percentage	and	investigate	that	all	cloudy	images	are	excluded	by	the
training	dataset	by	computing	the	s2cloudless	cloud	mask.
Restrict	the	data	domain	by:

Train	and	generate	only	satellite	images	with	acquisition	time	within	the	growth	season	of	the	crop.
Include	other	data	or	exclude	data	as	input	data,	for	example:

Exclude	the	Sentinel	1	VV	polarisation,	as	it	seams	to	contain	noise.
Exclude	the	border	pixels	(i.e.	by	using	spatial	erosion),	as	the	border	often	contains	noise	from	trees	or	vegetation
than	the	crop	on	the	field.
Include	the	compute	Gray-Level	Co-Occurrence	Matrix	(GLCM)	based	on	the	Sentinel	1	data.
Include	the	Danish	elevation	model	(DTM).
Include	the	static	features	as	location	of	the	field,	image	acquisition	time.

Improve	the	pix2pix	training	process	by:
Visualise	the	input	data	channels	and	the	generated	bands	or	vegetation	indices	during	the	training	process.
Improve	the	speed	of	the	training	process,	such	that	more	epoch	can	be	performed	in	the	training	data,	i.e.	by
representing	images	by	uint8	values	instead	of	the	current	float	values.
Perform	a	learning	curve	analysis	to	conclude	of	similar	performance	can	be	reached	with	fewer	training	samples,	thus
a	faster	training.

Improve	model	generalisation	via	image	augmentation,	for	example	by:
Random	crop	images.
Random	flip	images.

Improve	the	pix2pix	generator'	abilities	by:
Perform	hyperparameter	tunning,	for	example	using	grid	search.
Perform	image	normalisation,	for	example	by	normalizing	all	images	values	to	a	normal	distribution.

Investigate	error-difference	results,	for	example	to	answer	the	questions:
Is	the	error-difference	different	for	images	from	different	regions	of	Denmark,	or	different	acquisition	times	over	the
year?


